Substancje antyodżywcze (ang. anti-nutrients) to związki chemiczne występujące w żywności, które częściowo lub całkowicie ograniczają wykorzystanie wartościowych elementów odżywczych przez ludzki organizm, bądź takie, które mają na niego szkodliwy wpływ. Do substancji antyodżywczych należą:
• substancje naturalnie występujące w pożywieniu pochodzenia roślinnego i zwierzęcego;
• związki przenikające do żywności z zanieczyszczonego środowiska, np. pozostałości środków ochrony roślin i nawozów;
• substancje dodawane do żywności w celu poprawy jej właściwości i trwałości.
Związki te mogą interferować z procesami trawienia, wchłaniania i niektórymi innymi etapami metabolizmu substancji odżywczych, przez co obniżają ich wykorzystanie jako składników energetycznych lub budulcowych [1, 2].
Uwaga na kwas fitowy
Kwas fitowy (IP6) tworzy nierozpuszczalne połączenia z jonami żelaza, cynku, wapnia i magnezu, czyli tzw. fityniany, co zmniejsza przyswajalność tych minerałów. Długotrwałe spożywanie znacznych ilości produktów bogatych w kwas fitowy może doprowadzić do niedoborów składników mineralnych w organizmie, a tym samym być przyczyną krzywicy, osteoporozy oraz zaburzeń mineralizacji szkliwa uzębienia. Ponadto, substancje te utrudniają przyswajanie białka z posiłków, a także wywołują zaburzenia pracy przewodu pokarmowego np. wzdęcia [3].
Z drugiej jednak strony, badania naukowe wykazały pozytywne działanie kwasu fitowego na zdrowie człowieka, w tym: obniżenie poziomu cholesterolu, ograniczenie wchłanianie metali ciężkich z przewodu pokarmowego, zmniejszenie tendencji do tworzenia się kamieni nerkowych, a także działanie antynowotworowe i właściwości przeciwutleniające [5 -7].
Główne źródła kwasu fitowego w żywności to ziarna zbóż i nasiona roślin strączkowych. Ponieważ fityniany znajdują się przede wszystkim w okrywie nasiennej ziaren, bogatsze w nie są produkty pełnoziarniste. Zastosowanie obróbki, np. moczenia nasion roślin strączkowych, może wpłynąć na obniżenie zawartości kwasu fitowego od 4 do 37% [2, 4]. Podobne działanie demineralizujące wykazuje kwas szczawiowy, który wywiera szczególnie niekorzystne działanie w połączeniu z kwasem fitowym. Kwas ten występuje w wielu owocach, rabarbarze, szczawiu, szpinaku, jak również w kawie oraz herbacie [3, 8].
Glukozynolany – tak czy nie?
Glukozynolany wykazują zarówno własciwości antyżywieniowe, jak i prozdrowotne. Związki te naturalnie występują w roślinach i są najbardziej charakterystyczne dla warzyw kapustnych, w których najczęściej występuje kilkanaście rodzajów glukozynolanów. Ilość i skład tych związków w poszczególnych roślinach różni się w zależności od gatunku, odmiany, fazy rozwojowej oraz warunków klimatycznych uprawy. Największą różnorodnością pod względem składu glukozynolanów charakteryzuje się kapusta biała, która zawiera osiem różnych glukozynolanów [9].
Nadmierne spożywanie znacznych ilości glukozynolanów może doprowadzić do upośledzenia funkcji wydzielniczej tarczycy, a następnie do wzrostu aktywności tyreotropowej i przerostu tarczycy. Goitrogenne działanie produktów rozpadu glukozynolanów jest większe, jeśli ilość jodu w diecie jest mniejsza – z tego względu istotne jest, aby spożycie warzyw kapustnych związane było z obecnością jodu w pożywieniu. Choć same glukozynolany są odporne na działanie wysokiej temperatury, gotowanie zawierających te związki warzyw w temperaturze 90°C powoduje denaturację białek enzymatycznych i dezaktywację mirozynazy – enzymu odpowiedzialnego za hydrolizę glukozynolanów, występującego w tkankach roślin kapustnych [2, 9].
Należy jednak podkreślić, że oprócz potencjalnych działań niepożądanych, spożywanie glukozylanów niesie ze sobą sporo korzyści. Badania wykazały, że substancje te mają istotne znaczenie w przypadku chemoprewencji nowotworów – glukozynolany mają pozytywny wpływ na zapobieganie kancerogenezie na wczesnych jej etapach [10]. Za najważniejsze pochodne glukozynolanów w profilaktyce nowotworowej, a także w przypadku innych dietozależnych chorób przewlekłych, uważane są izotiocyjaniany [9].
Kilka słów o taninach
Zaliczane do polifenoli (związków chemicznych z grupy fenoli, zawierających przynajmniej dwie grupy hydroksylowe przyłączone do pierścienia aromatycznego) taniny znane są ze swoich właściwości antyoksydacyjnych. Niestety, taniny mają też negatywne właściwości – wchodzą one w reakcję z żelazem i uniemożliwiają jego przyswojenie przez organizm, co jest szczególnie niebezpieczne u osób z ryzykiem wystąpienia anemii lub małych dzieci. Do bogatych źródeł tanin należą herbata oraz kawa, dlatego naukowcy zalecają, aby unikać tych napojów w trakcie posiłku. Taniny nadają charakterystyczną cierpkość i goryczkę owocom, herbacie, winu, piwu i ziarnom kakaowca [11, 12].
Jak działa amigdalina?
Amigdalina (zwana potocznie "witaminą B17") to organiczny związek zaliczany do glikozydów, występujący w pestkach wielu roślin – największe ilości amigdaliny stwierdzono w nasionach moreli, migdałów, brzoskwiń, wiśni, czereśni i pigwy oraz w pestkach jabłek. Amigdalina jest związkiem cyjanogennym – pod wpływem enzymów trawiennych rozkłada się i powstaje kwas cyjanowodorowy, szczególnie groźny, jeśli połączymy go z witaminą C [13, 14]. Na szczęście, organizm ludzki ma zdolność detoksykacji cyjanowodoru pod warunkiem, że cyjanogenny produkt spożywany jest w niewielkich dawkach i rozłożony w czasie. Nasiona migdałowca gorzkiego zawierają 3‑5% amigdaliny i spożycie 50‑60 jego nasion może skutkować śmiercią, natomiast nasiona migdałowca słodkiego wykazują 40‑krotnie mniejsze stężenie cyjanowodoru i są uważane za bezpieczne do spożycia [9].
Amigdalina po raz pierwszy została wyodrębniona w XIX wieku i od razu zyskała popularność dzięki możliwemu działaniu antynowotworowemu, które nie zostało potwierdzone do tej pory – większość badań przemawiających za amigdaliną wykonano w warunkach in vitro, które choć pozwalają na szczegółowe poznanie mechanizmów działania na poziomie komórki, to trudno jest na ich podstawie określić rzeczywisty efekt działania związku na poziomie całego organizmu [15].
Wpływ lektyn na organizm
Lektyny, czyli białka lub glikoproteiny wiążące węglowodany, obecne są w produktach powszechnie spożywanych, m.in. w: grochu, fasoli, soi, zbożach oraz w warzywach. Większość z nich może być inaktywowana przez obróbkę termiczną prowadzoną w trakcie procesów przemysłowych, jak i w gospodarstwach domowych, jednak niektóre lektyny są wysoce termostabilne (70°C > 30 min) i nie ulegają całkowitej degradacji podczas gotowania.
Ich rola fizjologiczna polega na obronie roślin przed fitopatogenami i roślinożercami, na działaniu cytotoksycznym, grzybobójczym, owadobójczym i pasożytniczym [16, 17].
W uprawianej w Polsce fasoli czerwonej oraz w nasionach bobu występuje białko fazyna (fitohemaglutynina), które powoduje sklejanie się (aglutynację) erytrocytów – białko to ulega rozkładowi podczas obróbki termicznej, dlatego wymagane jest gotowanie fasoli czerwonej w temperaturze 100°C przez co najmniej 30 minut [2].
Dlaczego nie powinno się łączyć ogórków z pomidorami?
Askorbinaza to enzym z grupy oksydaz, występującym w niektórych produktach pochodzenia roślinnego – stosunkowo dużo askorbinazy znajduje się w świeżym ogórku. Działanie jej polega na rozkładzie kwasu askorbinowego, czyli witaminy C, co zachodzi po zniszczeniu struktury komórek warzywa (np. przez pokrojenie) i uwolnieniu enzymu. Spożywając więc ogórka z pomidorem, narażamy witaminę C na działanie askorbinazy i na jej utlenienie. Zachodzi to również w przypadku łączenia świeżego ogórka z innymi warzywami zawierającymi wit. C, np. papryką lub natką pietruszki. Zakwaszenie potrawy (np. dodanie soku z cytryny lub oliwy z octem) może zneutralizować niekorzystne oddziaływanie askorbinazy [18, 19].
KOMENTARZE