Odkrycie enzymu było wynikiem intensywnych badań nad dwoma bardzo różnymi grupami drobnoustrojów produkujących toluen. Jedna z nich zawierała drobnoustroje z osadów jeziornych, druga zaś z osadów ściekowych. Ze względu na fakt, że drobnoustroje w środowisku są rezerwuarem enzymów, które katalizują wyjątkowo zróżnicowany zestaw reakcji chemicznych, naukowcy pozyskujący enzymy ze środowiska naturalnego nie są zatem rzadkością w dziedzinie biotechnologii. Naukowców do badań skłoniła publikacja jeszcze z lat 80. ubiegłego wieku, gdzie ujawniono mikrobiologiczną biosyntezę toluenu w beztlenowych osadach jeziornych. Pomimo wielu doniesień o bakteryjnym wytwarzaniu toluenu, tożsamość enzymu katalizującego tę biochemicznie trudną reakcję była tajemnicą przez wiele lat.
Odkryty podczas badań enzym syntetyzujący toluen to dekarboksylaza fenylooctanu – należy do grupy enzymów, znanych jako enzymy z resztą glicylową (ang. GRE – Glycyl Radical activating Enzymes). Enzymy te rozpoznano dopiero w latach 80. XX wieku. Przedstawione w badaniu dowody metagenomiczne sugerują, że w przyrodzie istnieje wiele innych enzymów z resztą glicylową, które jeszcze nie zostały scharakteryzowane. Radykalna natura tej grupy enzymów pozwala im katalizować trudne chemicznie reakcje, takie jak chociażby beztlenowa dekarboksylacja fenylooctanu w celu wytworzenia toluenu. Poza potencjalnymi zastosowaniami biotechnologicznymi, wiele znanych GRE ma znaczenie dla zdrowia człowieka, a co ciekawsze występuje w ludzkim mikrobiomie jelitowym.
Proces odkrywania enzymów w tym badaniu był trudny, jak i niekonwencjonalny. Naukowcy po raz pierwszy rozpoczęli pracę z bakteriami produkującymi toluen, bazując na doniesieniach z poprzedniego wieku. Jednak kiedy procedury te okazały się nieodtwarzalne, badacze zwrócili się w stronę środowisk, w którym bezpośrednio powstają kultury produkujące toluen – czyli do ścieków komunalnych i beztlenowych osadów jeziornych.
Odkrywanie enzymów stanowi wyzwanie, jednak przejście od odkrycia w jednym gatunku bakterii, do odkrycia w złożonej grupie drobnoustrojów z osadów ściekowych lub osadów jeziornych było znacznie trudniejsze. Znalezienie enzymu wytwarzającego toluen w puli kandydatów złożonej z setek tysięcy enzymów było niczym poszukiwanie igły w stogu siana. Analizy metagenomu ujawniły, że te grupy drobnoustrojów zawierały ponad 300 000 genów (odpowiednik ponad 50 genomów bakterii). Innym wyzwaniem był fakt, że anaerobowe grupy drobnoustrojów i ich enzymy były wrażliwe na tlen, co zmuszało naukowców do manipulowania kulturami i enzymami w ściśle beztlenowych warunkach. Proces odkrywania łączył techniki oczyszczania białek stosowane przez biochemików od dziesięcioleci, takie jak wysokosprawna chromatografia cieczowa rozdzielająca białka w połączeniu z nowoczesnymi analizami metagenomicznymi, metaproteomicznymi i powiązanymi z nimi analizami bioinformatycznymi. Ważnym elementem procesu odkrywczego było zatwierdzenie przewidywań naukowców dotyczących enzymu powstającego w procesie biosyntezy toluenu za pomocą eksperymentów z użyciem ściśle kontrolowanych testów obejmujących oczyszczone białka. Pojawia się zatem pytanie: dlaczego bakteria produkuje toluen? Niestety, badacze nie dają jednoznacznej odpowiedzi, ale przedstawiają dwie hipotezy. Jedną z możliwości jest to, że bakteria produkuje toluen jako toksynę w celu zwalczania innych drobnoustrojów w swoim środowisku. Druga hipoteza zakłada, że reakcja dekarboksylazy fenylooctanu (wytwarzanie toluenu) zapewnia strategię dla bakterii do regulowania jej wewnętrznego pH w kwaśnym, fermentacyjnym środowisku. Badacze wierzą, że wyniki ich badań mają wpływ na naukę podstawową i stosowaną. Z biochemicznego punktu widzenia, badanie rozszerza znany katalityczny zakres GRE, zaś z perspektywy biotechnologicznej umożliwi po raz pierwszy biochemiczną syntezę aromatycznego paliwa węglowodorowego z zasobów odnawialnych. Jednak, jak podkreślają badacze, muszą się jeszcze wiele nauczyć o niezwykłej różnorodności metabolicznej bakterii.
KOMENTARZE