Biotechnologia.pl
łączymy wszystkie strony biobiznesu
Trzeci komplet zębów zamiast tradycyjnych implantów – rozwiązanie polskich naukowców

Naukowcy z Politechniki Warszawskiej, Uniwersytetu Medycznego w Poznaniu oraz Uniwersytetu Mikołaja Kopernika w Toruniu, w ramach projektu badawczego SteamScaf, finansowanego ze środków Inicjatywy Doskonałości Uczelni Badawczej PW (BioTechMed-3 Advanced), próbują wyhodować „trzecie” zęby, opierając się na możliwościach, jakie dają obecne w dziąsłach komórki macierzyste. Docelowo takie prace mogą pomóc wyeliminować potrzebę stosowania implantów albo stworzyć tkankę nerwową, kostną czy chrzęstną do przeszczepów.

Fot. Dr hab. inż. Agnieszka Gadomska-Gajadhur, źródło: PW

Zdaniem badaczy potencjał dziąsła do przekształcania się w inne struktury jest ogromny i otwiera wiele możliwości, jeśli chodzi o zastosowania w medycynie. – Jeśli nam się uda, z pobranych z własnego dziąsła komórek będzie można wytwarzać zawiązki zębów, odbudować strukturę nerwów obwodowych dla tych, którzy potrzebują ich przeszczepu, czy chrząstkę, np. dla sportowców, którzy doznali poważnych kontuzji w obrębie stawów – wymienia kierująca projektem SteamScaf dr hab. inż. Agnieszka Gadomska-Gajadhur z Wydziału Chemicznego Politechniki Warszawskiej. Od kilku lat wiadomo, że dziąsło ma znaczny potencjał regeneracyjny. Stosunkowo niedawno potwierdzono w nim obecność mezenchymalnych komórek macierzystych. – W obszarach po ekstrakcji zęba nawet znacznych rozmiarów ubytki kostne oraz braki tkanek miękkich podlegają odbudowie, oczywiście za wyjątkiem zęba. Ponadto gojenie w jamie ustnej zachodzi często bez tworzenia blizny. Dlatego wyszliśmy z założenia, że dziąsło, a szczególnie jedna populacja jego komórek, może stać się bazą do tworzenia innych tkanek, np. nerwowej, kostnej czy chrzęstnej – tłumaczy dr Gadomska-Gajadhur.

Badania tego typu zaliczają się do dziedziny nauki zwanej inżynierią tkankową. Łączy ona w sobie wiedzę medyczną, chemiczną oraz metody inżynierii materiałowej i służy do wytwarzania funkcjonalnych zamienników tkanek lub nawet całych narządów. Wszystko po to, by wspomóc regenerację uszkodzonych, trudnych do wyleczenia tkanek. Ważnym aspektem inżynierii tkankowej są hodowle komórkowe. Najpowszechniejszą i do niedawna jedyną metodą ich prowadzenia były płaskie szklane naczynka zwane płytkami Petriego. W ostatnich latach jednak coraz częściej naukowcy zwracają się w kierunku hodowli trójwymiarowych, które lepiej odzwierciedlają panujące w organizmie warunki. Aby uzyskać trójwymiarowe hodowle, potrzebne są specjalne rusztowania, na których komórki będą mogły wzrastać i namnażać się. – Komórki hodowane na płytach Petriego rosną w pojedynczej warstwie, niczym naklejone na materiał cekiny, jedna obok drugiej. W naszych hodowlach na specjalnych rusztowaniach lub w tzw. sferoidach komórki rosną przestrzennie, we wszystkich trzech wymiarach. Taki sposób dużo bardziej przypomina to, co się dzieje naturalnie w organizmie – opisuje kierowniczka omawianego projektu. Materiały, z których zbudowane są wspomniane rusztowania, naukowcy z PW także stworzyli sami. – Sami je wymyśliliśmy i opracowaliśmy. Zostały już zgłoszone do opatentowania. Postawiliśmy na kompleksowe podejście: od syntezy materiału, poprzez wytworzenie rusztowań, aż do hodowli komórkowej – dodaje dr Gadomska-Gajadhur. Badaczka wyjaśnia, że wykorzystywane przez jej zespół rusztowania (czyli przyszłe implanty) różnią się w zależności od tego, jaka tkanka ma na nich powstać. Do każdej tkanki materiał bazowy jest trochę inny, ale wszystkie mają dwie wspólne cechy: są bioresorbowalne i naturalne dla naszego ciała. Składają się z cząsteczek, które organizm dobrze zna i potrafi metabolizować. Po pewnym czasie, kiedy implant wypełni już swoje zadanie, ulega rozkładowi, a jego resztki zostają usunięte z organizmu. Dzięki temu naukowcy eliminują problem powikłań i odrzuceń, do jakich często dochodzi przy różnego rodzaju przeszczepach tkanek.

Podstawą całego projektu SteamScaf jest różnicowanie komórek pobranych z dziąsła w kierunku innych komórek, które następnie stworzą całe tkanki. – Na początku pobieramy fragmenty dziąseł. W tym momencie są to dziąsła świń, bo nie udało nam się uzyskać dostępu do odpowiedniej ilości materiału ludzkiego, ale w przyszłości będzie to dziąsło tej samej osoby, dla której ma być stworzony implant. Nie stanowi to jednak problemu, bo świnia jest bardzo podobna genetycznie do człowieka –  argumentuje badaczka z PW. Następnie, jak tłumaczy, z pobranej tkanki izoluje się pożądane komórki, ponieważ na początku znajduje się tam mieszanina wielu różnych typów komórek. – Nam zależy tylko na niektórych z nich, więc za pomocą metod chemicznych rozdzielamy je od siebie. Jeśli uda nam się pozyskać wyselekcjonowane komórki macierzyste, możemy zróżnicować je w odpowiednim kierunku. Jeśli nie, to najpierw inne komórki dziąseł „cofamy” do etapu komórek macierzystych, a dopiero wtedy rozpoczynamy hodowlę i – dzięki dodawaniu odpowiednich czynników wzrostu – różnicowanie w kierunku różnych tkanek: kostnej, chrzęstnej oraz nerwowej. To są bardzo pionierskie badania. Nikt jeszcze nie próbował robić tego, co my. Dlatego sprawdzamy obie te metody równolegle, aby stwierdzić, która finalnie okaże się lepsza – mówi dr Gadomska-Gajadhur. Cały ten proces odbywa się poza organizmem, czyli in vitro. Pacjentowi wszczepiałoby się dopiero gotowy „produkt”, a więc fragment wyhodowanej wcześniej tkanki.

Największe nadzieje naukowcy z PW wiążą z wykorzystaniem omawianego rozwiązania w stomatologii. – Byłby to ratunek dla wielu osób, które straciły zęby, czy to w wyniku choroby, czy wypadku, czy próchnicy, a nie mogą mieć założonych klasycznych implantów – zauważa dr Gadomska-Gajadhur. Jak dodaje, większość ludzi myśli, że w przypadku braków uzębienia to właśnie tradycyjne implanty są najlepszym rozwiązaniem. Niestety często u pacjenta występuje dodatkowo brak odpowiedniego podparcia kostnego czy też estetyki dziąsłowej. – Opracowywane przez nas złożone materiały mogłyby zastąpić brakujące tkanki lub wspierać ich odbudowę – podkreśla badaczka. Jako ciekawostkę dr Gadomska-Gajadhur przytacza coraz częstsze przypadki zapaleń wokół implantów. – Obecnie nie ma skutecznych sposobów ich leczenia, a odsetek tych powikłań wzrasta i powoduje utratę implantów. Nasz pionierski materiał mógłby potencjalnie stymulować odbudowę tkanek, służąc nie tylko jako rusztowanie dla komórek, ale również gotowe rozwiązanie w postaci aktywnego biologicznie materiału – uważa. 

Stomatologia to jednak nie jedyna dziedzina, w której innowacyjne implanty mogłyby znaleźć zastosowanie. – Potencjał regeneracyjny dziąsła jest na tyle duży, że mamy nadzieję na wyhodowanie z niego także zupełnie innych zawiązków tkanek. Nasze największe plany dotyczą tkanki nerwowej. Taką wyhodowaną w warunkach laboratoryjnych tkankę moglibyśmy wykorzystywać do przeszczepów, np. nerwów obwodowych czy w obrębie rdzenia kręgowego u osób sparaliżowanych – opowiada dr Gadomska-Gajadhur. Także tkankę chrzęstną można z powodzeniem hodować w warunkach laboratoryjnych. – To rozwiązanie idealne do przeszczepów chrzestnych w obrębie stawów, np. u sportowców, którzy często mają duże ubytki chrząstki. Pobieralibyśmy fragment dziąsła od takiego pacjenta, przez kilka tygodni hodowali w laboratorium zgodnie z opisanymi wcześniej procedurami, a następnie wszczepiali gotowy implant o 100-procentowej zgodności tkankowej – omawia badaczka. Projekt SteamScaf ma potrwać do końca przyszłego roku. – Jeśli wszystko pójdzie po naszej myśli, zakończą go badania przedkliniczne, a następnie kliniczne. Nie mamy jeszcze środków, bo to niezwykle kosztowne procedury, za to mamy już całą listę chętnych do badań klinicznych – podsumowuje autorka projektu. 

Autorka: Katarzyna Czechowicz (PAP)

KOMENTARZE
news

<Październik 2025>

pnwtśrczptsbnd
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
Newsletter