Biotechnologia.pl
łączymy wszystkie strony biobiznesu
RNA w 3D? Polacy zostawiają konkurencję w tyle!
Już 1 mln razy badacze i osoby z całego świata wykorzystały RNAComposer – publicznie dostępny, skuteczny poznański system do modelowania struktury 3D RNA . A to nie jedyny polski sukces w badaniach nad wyznaczaniem struktury RNA.

 

 

 

RNA to cząsteczki kwasu rybonukleinowego. Bez nich komórka nie mogłaby produkować białek - cząsteczek, które są istotne dla budowy i funkcjonowania komórek. Rodzajów RNA jest sporo i pełnią one w komórce różne funkcje.

I tak np. matrycowe RNA są pośrednikami, dzięki którym z DNA daje się wyciągnąć informacje - przepis na białka. Z rybosomowych RNA zbudowane są rybosomy - komórkowe centra produkcji białek. A transferowe RNA mają przynosić do tych centrów odpowiednie aminokwasy – jednostki budulcowe białek.

Funkcje RNA są na tyle istotne, że naukowcy z całego świata badają właściwości różnych jego cząsteczek. Aby jednak skuteczniej przewidywać funkcje danego RNA i móc projektować w laboratoriach w pełni funkcjonalne molekuły, trzeba wiedzieć, jaką strukturę 3D ma konkretny RNA, czyli jak jest on zwinięty w przestrzeni.

– Od struktury przestrzennej RNA zależą jego funkcje" - opowiada dr hab. inż. Marta Szachniuk z Europejskiego Centrum Bioinformatyki i Genomiki (konsorcjum Politechniki Poznańskiej oraz Instytutu Chemii Bioorganicznej PAN).

Tymczasem jednak wcale nie jest tak łatwo zbadać metodami eksperymentalnymi, jak pozwijane są poszczególne cząsteczki.

Cząsteczkę RNA tworzy zwykle nić składająca się z połączonych ze sobą reszt nukleotydowych (w skrócie: A, C, G, U). Nawet jeśli rozszyfruje się ich kolejność w łańcuchu RNA, czyli określi sekwencję, nie jest pewne, jak cała cząsteczka układa się w przestrzeni. Bo cząsteczki RNA - w przeciwieństwie do kabla od słuchawek wrzuconych do plecaka - nie zwijają się w przypadkowe supły. Istnieją pewne reguły, które pozwalają przewidzieć, jaki kształt przybierze dana cząsteczka. W rozwikłaniu tego zagadnienia pomocne okazują się komputerowe metody do przewidywania struktur 3D RNA.

Dr hab. Marta Szachniuk wspólnie z zespołem prof. Ryszarda Adamiaka z Instytutu Chemii Bioorganicznej PAN w Poznaniu opracowała darmowy, publicznie dostępny system RNAComposer. Do systemu wprowadza się sekwencję RNA (lub informację o oddziaływaniach między resztami nukleotydowymi, czyli tzw. strukturę drugorzędową), a on w ciągu kilku/kilkunastu sekund oblicza i prezentuje trójwymiarowy model cząsteczki. Program sprawnie radzi sobie zarówno z krótkimi, jak i bardzo długimi łańcuchami cząsteczek RNA o skomplikowanej architekturze.

– Wielu naukowców z całego świata używa programu RNAComposer, żeby uzyskiwać pierwsze wyobrażenie tego, jak wyglądać może w 3D cząsteczka, którą badają. Nasz system od 2012 r. wykonał już 1 mln predykcji" - opowiada dr hab. Marta Szachniuk.

To nie jest jedyny system informatyczny do predykcji struktury 3D RNA. Takich automatycznych systemów jest kilka. Poza tym przewidywaniem struktur RNA zajmują się zespoły badawcze wspomagające się badaniami eksperymentalnymi.

Aby porównać skuteczność różnych metod wyznaczania kształtu RNA w przestrzeni 3D, od 2010 roku organizowany jest konkurs RNA-Puzzles. Chodzi w nim o to, by mając zadaną sekwencję RNA, jak najdokładniej wyznaczyć strukturę cząsteczki. Modele przewidziane przez uczestników konkursu porównywane są następnie z wynikami eksperymentów chemicznych i biologicznych prowadzących do określenia struktury. Konkurs organizowany jest obecnie w dwóch kategoriach: serwerów, które automatycznie generują wyniki, oraz w kategorii predykcji ludzkich, gdzie modele powstają w wyniku integracji obliczeń komputerowych i eksperymentów laboratoryjnych. "Jesteśmy najlepsi w kategorii automatycznych systemów do predykcji 3D RNA" - podkreśla dr Szachniuk.

System RNAComposer powstał dzięki temu, że od dekady zespół z ECBiG skrzętnie gromadził ogromną bazę danych dotyczących RNA. W bazie RNA FRABASE zebrano informacje z ogromnej liczby eksperymentów. Takich, z których można było wyciągnąć wnioski o strukturze przestrzennej molekuł RNA. Baza ta jest ciągle aktualizowana i każdy może z niej bezpłatnie skorzystać. "To popularne narzędzie. Wiemy nawet, że na zagranicznych uczelniach korzystają z niej np. studenci w ramach badań i studiów przygotowujących do zawodu bioinformatyka czy biologa" - opowiada dr Szachniuk. Baza ta pomaga m.in. wyszukiwać czy w różnych cząsteczkach powtarzają się jakieś konkretne przestrzenne wzorce.

Polska na światowej mapie badań nad strukturą RNA jest widoczna także dzięki badaniom innych zespołów. Ważną postacią jest tu m.in. prof. Ryszard Kierzek z Instytutu Chemii Bioorganicznej PAN w Poznaniu. Jego prace pozwoliły określić termodynamiczne reguły fałdowania RNA. Nowatorskimi badaniami nad wyznaczaniem struktury RNA zajmuje się również zespół prof. Janusza Bujnickiego z Międzynarodowego Instytutu Biologii Molekularnej i Komórkowej w Warszawie.

 

Źródło: www.naukawpolsce.pap.pl

 

 

 

KOMENTARZE
news

<Październik 2025>

pnwtśrczptsbnd
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
Newsletter