Biotechnologia.pl
łączymy wszystkie strony biobiznesu
"Z pewnością nie zabraknie nam tematów do badań" – o bioczujnikach i mikroukładach rozmawiamy z prof. Dorotą Pijanowską z IBIB PAN
"Z pewnością nie zabraknie nam tematów do badań" –  o bioczujnikach i mikroukładach rozmawi
Karetka pogotowia, nieprzytomny pacjent, ekipa ratunkowa prowadzi proces resuscytacji. Poszkodowany nie posiada przy sobie dokumentów, historii przebytych chorób i oprócz tego, że znajduje się w ciężkim stanie nic więcej o nim nie wiadomo. Czas ucieka i szybko trzeba podjąć decyzję o podaniu odpowiednich leków. Z jednej strony mogą one uratować życie ofiary, z drugiej jednak jeżeli pacjent uczulony jest na którąś z substancji aktywnych jego stan może się nawet pogorszyć. W takim momencie niezawodny okazuje się specyficzny bioczujnik pozwalający w krótkim czasie na miejscu, w karetce, oznaczyć kilka substancji chemicznych np. z krwi lub śliny poszkodowanego. Szybka analiza wyniku, decyzja i w krwi pacjenta już znajduje się odpowiedni lek w odpowiedniej dawce. To wcale nie science fiction. Badania nad opracowaniem niezawodnych, szybkich i wysoce specyficznych czujników pozwalających na analizy biochemiczne trwają w Pracowni Bioczujników i Mikrosystemów Analitycznych w Instytucie Biocybernetyki i Inżynierii Biomedycznej PAN w Warszawie. O szczegółach badań i dynamicznie rozwijającej się branży bioczujników opowiada nam dr hab. inż. prof. nadzw. Dorota G. Pijanowska - Kierownik Pracowni oraz Kierownik Zakładu Mikrobiosystemów Hybrydowych i Analitycznych IBIB PAN.

 

Czym zajmuje się Pracownia Bioczujników i Mikrosystemów Analitycznych?

Prof. Dorota Pijanowska: Prowadzimy badania nad bioczujnikami i mikroukładami analitycznymi. Popyt na miniaturowe urządzenia do jednoczesnych oznaczeń kilku substancji biochemicznych bądź do badań 'przy łóżku pacjenta' (point-of-care) stale rośnie. Najistotniejsze cechy bioczujników to krótki czas odpowiedzi, niezawodność i niska cena pojedynczego oznaczenia. Aktualnie prowadzone prace badawcze dotyczą bioczujników elektrochemicznych i mikrosystemów do analiz biochemicznych.

 

Bioczujniki jednak to nie jest hit ostatnich lat prawda?

Najstarszym i najbardziej popularnym bioczujnikiem jest czujnik glukozy. W klasycznym ujęciu jest on zbudowany z wykorzystaniem elektrochemicznego czujnika tlenu z membraną półprzepuszczalną, na powierzchni której zachodzi reakcja enzymatyczna oksydazy glukozowej – mierzona jest konsumpcja tlenu podczas reakcji enzymatycznego utleniania glukozy. I rzeczywiście, ma pan rację, pierwszy model bioczujnika, wykorzystującego taką reakcję powstał w latach 60–tych XX wieku. Obecnie czujniki glukozy to ogromny i bardzo dochodowy rynek, największa gałąź całej branży bioczujników.

 

Rynek ten bardzo się rozwinął

Tak, i wpłynął na to szereg różnych czynników. Na samym początku czujniki czy też same układy analityczne były po prostu stosunkowo dużych rozmiarów. Potem, w latach 70–tych, zaczął rozwijać się przemysł elektroniczny oparty na półprzewodnikach, głównie krzemie, stąd też narodziła się idea wykorzystania miniaturowych struktur półprzewodnikowych jako czujników podstawowych, które można połączyć z elementami biologicznie czynnymi uzyskując w ten sposób pierwsze miniaturowe bioczujniki. Następowała zatem stopniowa miniaturyzacja tych urządzeń. Zaczęto wykorzystywać termistory – elementy mierzące temperaturę bądź zmianę temperatury zachodzącą w czasie reakcji biochemicznych. Z czasem w bioczujnikach pojawiły się również tranzystory polowe, w których usunięto jeden element - bramkę metaliczną. Okazało się, że znajdujący się pod bramką metaliczną izolator np. ditlenek i azotek krzemu są czułe na jony wodorowe – to otworzyło drogę do detekcji elektrochemicznej, a w szczególności detekcji potencjometrycznej z wykorzystaniem jonoczułych tranzystorów polowych (ang. ion-selective field effect transistor, ISFET).

Obecnie intensywnie pracuje się także nad mikromacierzami DNA, których jednakże nie można bezpośrednio zaliczyć do grupy bioczujników. Mikromacierze to również ogromny rynek. Ich wielką zaletą jest możliwość prowadzenia dużej liczby reakcji hybrydyzacji DNA równolegle, w zdefiniowanych polach mikromacierzy.

 

Jak zatem można zdefiniować bioczujnik?

Konstrukcja bioczujnika jest dwuelementowa. Jedną część stanowi przetwornik elektroniczny, optoelektroniczny lub optyczny. Na jego powierzchni zaimmobilizowany, czyli unieruchomiony jest jakiś biologicznie aktywny czynnik. Czynnik biologiczny mogą stanowić np. enzymy, kwasy nukleinowe, przeciwciała, mogą to być nawet całe komórki lub fragmenty tkanek. Obecnie jednak ze względu na czas życia i skomplikowany proces podtrzymywania aktywności biologicznej dużych, złożonych obiektów, takich jak komórki czy tkanka, jako czynnik biologiczny wykorzystuje się zwykle DNA, przeciwciała lub enzymy. I to jest nasz główny obszar badawczy. Skupiamy się przede wszystkim na przetwornikach elektrochemicznych tzn. takich, w których na powierzchni czujnika zachodzi reakcja redoks lub reakcja wymiany jonowej, np. elektrody jonoselektywne, czy jonoczułe tranzystory polowe – to jest jedna gałąź naszych badań. Czujniki amperometryczne, na powierzchni których zachodzi reakcja utleniania bądź redukcji, w której następuje transfer elektronu do lub z elektrody pracującej. Uwolnienie elektronu może być wynikiem np. reakcji enzymatycznej zachodzącej na elektrodzie lub w bezpośredniej jej bliskości. Zatem, w takich układach następuje pomiar natężenia prądu płynącego między odpowiednio spolaryzowanymi elektrodami.

 

Czy wszystkie elementy bioczujników, nad którymi pracuje się w pani pracowni wytwarzane są na miejscu?

Współpracujemy z Instytutem Technologii Elektronowej w Warszawie, który dostarcza nam elementy półprzewodnikowe czujników, wcześniej wspomniane przetworniki elektryczne. W naszym laboratorium nie mamy technologii cienkowarstwowych i półprzewodnikowych, zatem nie mamy możliwości ich wytwarzania. Natomiast w naszym laboratorium prowadzone są prace nad modyfikacją tych struktur mającą na celu przyłączenie materiału biologicznie aktywnego do ich powierzchni. Technologia, którą dysponujemy w naszym laboratorium jest oparta na technikach grubowarstwowych umożliwiających wytworzenie np. czujników amperometrycznych. W naszym laboratorium robimy zatem część przetworników, dokonujemy modyfikacji powierzchni i dołączamy materiał biologiczny do części elektronicznej, a następnie dokonujemy wszelkich analiz reakcji zachodzących na powierzchni bioczujników.

 

Jak to się dzieje, że element biologiczny współpracuje z czujnikiem elektronicznym?

Wynikiem każdej reakcji chemicznej, czy to enzymatycznej czy redoks jest jej produkt. Naszym zadaniem jest skonstruowanie takiego czujnika z unieruchomionym na powierzchni chemoczułej materiałem biologicznym, z pomocą którego będziemożna oznaczyć produkty danej reakcji chemicznej lub biochemicznej– będzie mógł służyć jako detektor produktu tej reakcji. W tym właśnie tkwi sedno badań nad bioczujnikami.

 

Czyli zakres wiedzy potrzebnej do pracy nad bioczujnikami musi być szeroki.

To prawda. Jest to niewątpliwie praca interdyscyplinarna wymagająca zręcznego połączenia wiedzy z zakresu biochemii, elektroniki, chemii (elektrochemii) i inżynierii materiałowej.

 

Wróćmy do czujników enzymatycznych…

Cechą charakterystyczną czujników enzymatycznych, jest problem z ich wielokrotnym użyciem, albowiem w czasie pracy bioczujników następuje stopniowe lub czasami gwałtowne obniżanie aktywności enzymu. Niektóre enzymy jako złożone cząsteczki białkowe mają wbudowany kofaktor – koenzym, który można regenerować. Natomiast jest grupa enzymów, które nie posiadają wbudowanych kofaktorów. Są to między innymi enzymy z grupy dehydrogenaz, np. dehydrogenaza alkoholowa, która odpowiada za przekształcanie się aldehydu octowego w etanol lub odwrotnie. Enzymy z tej grupy korzystają z kofaktorów zewnętrznych. Zatem w bioczujnikach wykorzystującyCh dehydrogenazy oprócz samego enzymu powinien być obecny kofaktor, który dodatkowo podczas procesu pomiarowego musi być regenerowany. Celem jednego z naszych projektów było opracowanie bioczujnika z elektrochemiczną regeneracją kofaktora jakim jest dinukleotyd nikotynoamidoadeninowy (NAD). W projekcie tym, w celu obniżenia potencjału utleniania NADH i poprawienia stabilności czujnika, stosowaliśmy mediatory transferu elektronów, różne materiały elektrod, w tym polimery przewodzące, takie jak polipirol i polianilina.

 

Ile zajmuje przygotowanie odpowiedniego, gotowego do pracy bioczujnika?

Wszystko zależy od bezpośredniej współpracy z użytkownikiem, z odbiorcą. Można to zrobić w miarę szybko, np. w tydzień, ale wcześniej należy mieć przygotowaną bazę badawczą tzn. każdy czujnik przed pomiarem powinien być skalibrowany i wystandaryzowany. Nie możemy dopuścić do sytuacji, w której czujnikj mają różną czułość. Odpowiadamy też za wyniki pomiarów uzyskane z wykorzystaniem naszych czujników.

 

Prowadzicie też państwo badania między innymi nad immunoczujnikami, skierowanymi na wykrywanie białka C-reaktywnego.

CRP jest białkiem, które wskazuje na istnienie stanów zapalnych w organizmie. Oznaczenia tego białaka są wykorzystywane w diagnostyce choroby niedokrwiennej serca, ale należy pamiętać, że jest to marker niespecyficzny. Pojawia się ono w chorobach serca, ale też w stanach chorób onkologicznych. Jeśli chodzi o diagnostykę choroby niedokrwiennej serca, to CRP może być rozpatrywane, jako czynnik ryzyka, w pewnym stopniu prognozujący wystąpienie tej choroby. Osoby, które mają przewlekle podwyższone CRP, są bardziej narażone na wystąpienie choroby niedokrwiennej serca. Zatem, CRP traktujemy bardziej jako predyktor niż bezpośredni czynnik diagnostyczny.

 

***

CZYTAJ DALEJ DLASZA CZĘŚĆ WYWIADU, IMMUNOCZUJNIKI I BIOCZUJNIKI DNA

KOMENTARZE
Newsletter