Biotechnologia.pl
łączymy wszystkie strony biobiznesu
Dekada badań nad metylotransferazami DNA zakończona publikacją w „Nucleic Acids Research”
Dekada badań nad metylotransferazami DNA zakończona publikacją w „Nucleic Acids Research”

Niedawna publikacja naukowców z Laboratorium Biologii Strukturalnej MIBMiK oraz jego partnerów skupia się na losach analogów cytozyny w dwuniciowym DNA. Praca omawia ich początkową interakcję z enzymami metylującymi DNA oraz ostateczne usunięcie. Wyniki wieloletnich badań mogą przyczynić się do zrozumienia interakcji tych enzymów ze związkami wykorzystywanymi w leczeniu wielu chorób, w tym białaczek typu AML oraz CMML.

 

Metylacja DNA dostarcza dodatkową, niezależną od sekwencji DNA warstwę informacji i pamięci (epi)genetycznej. Może „mówić” komórkom, czy dany gen ma być aktywny, czy nie. Nic więc dziwnego, że zaburzenia wynikające z nieprawidłowej metylacji DNA są przyczyną wielu chorób, takich jak: zespół mielodysplastyczny (MDS), przewlekła białaczka mielomonocytowa (CMML), ostra białaczka szpikowa (AML) i β-hemoglobinopatie. Leczenie tych chorób jest możliwe poprzez blokowanie niechcianej metylacji DNA. – Zajęło nam niemal 10 lat, aby złożyć w całość wszystkie elementy układanki, ale jest niezwykle satysfakcjonujące zobaczyć ostateczną wersję artykułu w formie online w „Nucleic Acids Research”. Użyliśmy prostej prokariotycznej metylotransferazy M.MpeI jako modelu dla znacznie bardziej skomplikowanego ludzkiego enzymu DNMT1. Niektóre z analogów cytozyny (5-azacytydyna i jej pochodna, 2'-deoksy-5-azacytydyna) są już stosowane terapeutycznie jako inhibitory DNMT1 w leczeniu niektórych białaczek. Naszym celem było biochemiczne i strukturalne scharakteryzowanie kompleksów pochodnych cytozyny z metylotransferazami DNA i wyjaśnienie szczegółów ich interakcji z enzymami oraz dalszych losów – wyjaśnia Honorata Czapińska z Laboratorium Biologii Strukturalnej Międzynarodowego Instytutu Biologii Molekularnej i Komórkowej w Warszawie.

Wyniki okazały się znacznie ciekawsze niż początkowo przypuszczał zespół badawczy. Odkryto, że w obecności małych związków chemicznych zwykle używanych w pracy z metylotransferazami związki z atomem halogenu w miejscu, które powinno być metylowane, początkowo hamują działanie enzymu. Z czasem jednak są przekształcane podobnie, jak normalna cytozyna. – Ponieważ powszechnie uważano, że kompleksy inhibitorów ze związkami halogenowymi są nieodwracalne, zajęło nam dużo czasu, aby zrozumieć i udokumentować nasze odkrycia w sposób przekonujący dla ekspertów recenzujących naszą pracę. Niemniej jednak była to fascynująca podróż ku pełnemu zrozumieniu tego zjawiska – mówi Marek Wojciechowski z Instytutu Hodowli i Aklimatyzacji Roślin – Państwowego Instytutu Badawczego w Radzikowie. Wyjaśnienie mechanizmów molekularnych stojących za oddziaływaniem analogów cytozyny z metylotransferazami DNA może prowadzić do znalezienia nowych sposobów zapobiegania zaburzeniom o podłożu (epi)genetycznym, takim jak niektóre choroby układu krwiotwórczego.

Naukowcy podkreślają, że w analizie wyników bardzo pomocne były najnowsze rozważania teoretyczne opublikowane przez kierownika zespołu, prof. Matthiasa Bochtlera, w „Structure” na początku tego roku. Zrozumienie różnic między mapami potencjału elektrostatycznego uzyskiwanymi dzięki mikroskopii krioelektronowej a krystalograficznymi mapami gęstości elektronowej pomogło wyjaśnić rozbieżny wygląd związków halogenowanych w obu typach map. Publikacja zatytułowana „Cytosine Analogues as DNA Methyltransferase Substrates” („Analogi cytozyny jako substraty metylotransferazy DNA”) powstała w ramach współpracy naukowców z Międzynarodowego Instytutu Biologii Molekularnej i Komórkowej w Warszawie, Instytutu Hodowli i Aklimatyzacji Roślin – Państwowego Instytutu Badawczego w Radzikowie, Instytutu Biochemii i Biofizyki PAN w Warszawie oraz Wydziału Biochemii Uniwersytetu w Oksfordzie.

Źródła

Fot. Biuro Komunikacji Międzynarodowego Instytutu Biologii Molekularnej i Komórkowej w Warszawie

KOMENTARZE
news

<Czerwiec 2024>

pnwtśrczptsbnd
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Newsletter